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I. INTRODUCTION

The line-of-sight (LOS) of an aberrated optical system is defined in

terms of the centroid of its point spread function (PSF). Using the Fourier

transform relationship between the PSF and the optical transfer function

(OTF), it is also expressed as the slope of.the imaginary part of the OTF at

the origin. Since the system OTF is equal to the autocorrelation of its pupil

function, the centroid can also be written in terms of the amplitude and

aberration across its pupil. Using the expression in terms of the pupil

function, it is easy to show that the LOS obtained by wave diffraction optics

is identical with that based on geometrical optics. It is shown that, whereas

for an aberration-free pupil, different amplitude distributions across it give

the same LOS, regardless of its shape; for an aberrated pupil both the

aberration and the amplitude distribution affect the LOS. For a uniform

amplitude distribution, the LOS depends only upon the aberration along the

boundary of the pupil, i.e., it is independent of the aberration across its

interior.

Next, an optical system with aberrated but uniformly illuminated annular

pupil is considered. Its aberration function is expanded in terms of Zernike

annular polynomials. It is shown that only those aberrations contribute to

the LOS that vary with angle as cosO or sine, i.e., various orders of

coma-type aberrations. A simple expression is obtained for the LOS in terms

of the Zernike aberration coefficients. It is shown that two different orders

of Zernike coma (including tilts) with the same standard deviation across the

pupil do not contribute the same amount of LOS error; for a given standard

deviation, a higher-order Zernike coma gives a larger LOS error. Finally,

some numerical examples are considered. In particular, the PSF's aberrated by

primary and secondary classical coma, are discussed. It is shown that such

aberrations shift the peak and centroid of the PSF (which are coincident in

the aberration-free case) by significantly different amounts. Similar results

are obtained for annular pupils with radially symmetric illumination. These

results are illustrated by considering Gaussian illumination of an aberrated

annular pupil. Numerical results for both circular and annular pupils are

also given. In particular, it is shown that two PSF's aberrated by the same

-5-
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amount of primary and secondary coma have identical centroids in the case of

uniform illumination, but different centroids for Gaussian illumination.

The results obtained here are applicable to both imaging systems as well

as laser transmitters. For a certain point object, the amplitude distribution

across the pupil of an imaging system will generally be uniform. However,

across a laser beam, the amplitude distribution is often given by a Gaussian

function. Moreover, laser beams are often polarized. If the polarization is

linear, then the scalar treatment of diffraction considered in this paper

leads to a linearly polarized diffracted wave. If the beam is circularly or

elliptically polarized, then the diffraction of the two orthogonal polariza-

tion components may be treated separately. The total diffracted field is

obtained by taking a vector sum of the two diffracted components.

II. THEORY

The PSF of an optical imaging system, i.e., the irradiance distribution

of the image of a certain point object, according to wave diffraction optics

is given by
1

I(x,y) - (/X 2 R2 )I If P(u,v) exp[-2-9i(xu + yv)/AR] du dvI 2, (Ia)
S

where X is the wavelength of the object radiation and i - V'-T-. P(u,v) is

the pupil function of the system corresponding to this point object, and if

A(u,v) and W(u,v) represent the amplitude and aberration of the light wave at

a point (u,v) on its exit pupil, then

P(u,v) - A(u,v) expt2iiW(uv)/X], inside the pupil,

a 0, outside the pupil. (lb)

The integration in Eq. (Ia) is carried out over the clear or illuminated

region of the pupil. S represents the area of this region.

The aberration function W(u,v) represents the deviation of the optical

wavefront at the exit pupil from a spherical wavefront, called the reference

-6-



sphere, measured along a ray passing through the point (u,v). The aberration

W(u,v) is considered positive if a ray from the point object passing through

the point (u,v) has to travel a longer optical path in reaching the reference

sphere than a reference ray which passes through the center of the exit

pupil. The optical wavefront and the reference sphere pass through the center

of the exit pupil. The reference sphere has a radius of curvature R. Its

center of curvature is generally chosen to be at the Gaussian image of the

point object. The center of curvature may also be chosen such that the

variance of W(u,v) across the pupil is minimized. In either case, the center

of curvature defines the origin of the (x,y) image plane, which is parallel to

the (u,v) plane. The line joining the centers of the exit pupil and the

reference sphere defines a reference axis. In a system with an axis of rota-

tional symmetry, it may be considered as the reference axis.

The LOS for the point object as perceived by the optical system is

determined by the centroid of its PSF. If <x> and <y> represent the coordi-

nates of this centroid, then

<x> E- fi x I(xy) dx dy, (2a)

and

<y> E ff y I(xy) dx dy, (2b)

where

E f I(xy) dx dy, (3a)

is the total power (energy) in the image. Applying Parseval's theorem to

Eq. (1), we find that E is also given by

E If IP(u,v)12  du dv
S

= If I(uv) du dv , (3b)
S

-7-
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where

I(u,v) A 2(uv) (4)

is the irradiance at a pupil point (u,v). Equations (3a) and (3b) represent

conservation of energy; i.e., the total energy in the image is equal to the

total energy in the pupil. If <a> and <0> represent the angular LOS, they

are given by

<OL> =<x>IR (5a)

and

<$> = <y>/R. (5b)

where we have assumed that the angles are small so that they are approximately

equal to their tangents.

The OTF of an imaging system is equal to the Fourier transform of its

PSF. Thus if T(C,n) represents the OTF corresponding to a spatial frequency

(;,n~), then

( E -  I(x,y)exp[2i(Cx + fy)] dx dy. (6)

Differentiating both sides of Eq. (6) with respect to C and evaluating the

result at C -1 - 0, we find that

<X> W 1 (7a)
21ri acCTO

Similarly,

<I> a (7b)

Thus the centroid of the PSF of an optical system is given by the slope of its

corresponding OTF at the origin. However, since <x> and <y> are real-,

-8-
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only the slope of the imaginary part of the OTF at the origin contributes to

the centroid. 2 Thus, we may write

<x> - I 8=n=0
27r IT rro'(8a)

and

/ aTmT)
<Y>= ---- " (8b)

The OTF is also given by the autocorrelation of the pupil function as

may be seen by substituting Eq. (1) into Eq. (6).

Thus,

T(E,n) - E- I If P(u,v) P*(u - XRE,v - ARn) du dv, (9)

E

where * indicates a complex conjugate, and Z is the region of overlap of

two pupils centered at (0,0) and (XRE,XR7). Substituting Eq. (9) into Eq. (8),

we obtain
3

<x> = -(XR/2fTE) If Im[P(u,v) aP*(uv) du dv , (10)
S L J

and a similar equation for <y>. Substituting Eq. (lb) into Eq. (10), we obtain

<x> = f aW(uv) du dv . (Ila)

E SauS

Similarly,

-Y I f (u,v) aw(uv) du dv . (lib)<>=E S 5v

Since R(aW/au) and R(OW/av) represent the ray aberrations 4i.e., the image-

plane coordinates of a ray passing through the pupil point (u,v), Eq. (11)

shows that the centroid of the PSF according to wave diffraction optics is

identical with that according to ray geometrical optics.5 (The PSF given by

ray geometrical optics is called the spot diagram).

-9-
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From Eq. (11), we also note that amplitude variations across the pupil

affect the LOS only if it is aberrated. In the absence of aberrations, the

PSF centroid lies at the center of curvature of the reference sphere regard-

less of the shape of the pupil and the amplitude distribution across it. This

may also be seen from Eqs. (1) and (3). From Eq. (1), we note that if

W(uv) - 0, then I(xy) - I(-x,-y). Hence the symmetry of the aberration-

free PSF yields its centroid at the origin of the (x,y) image plane. Similar-

ly, since the aberration-free OTF is real (see Eq. (9)), Eq. (8) also gives

the centroid at the origin.

It should be noted that the peak value of an aberrated PSF may or may

not lie at its origin, depending on the magnitude and the type of aberration,

*( whether or not the amplitude across the pupil is uniform. However, the peak

value of an aberration-free PSF always lies at its origin, regardless of the

amplitude variation across the pupil. This may be seen from Eq. (1). If we let

f(u,v) - P(u,v) exp[-211i(xu + yv)/XR], (12a)

then, using Odlder's inequality, we find that

I"f$ f(u,v) du dvJ2

I(00) ff If(u,v)ldu dv

S (12b)

Thus, both the centroid and the peak value of an aberration-free PSF lie at

its origin, regardless of the amplitude variations across the pupil.

Equations (3), (8), and (1L) give the LOS of the system in terms of its

PSF, OTF, and the aberration function. In practice, given an imaging system,

the most convenient expression to use would be Eq. (3), since the PSF can be

measured easily by using a photodetector array. In optical design and

analysis, the simplest way to obtain the LOS would be to use Eq. (11), since

the aberrations must be calculated even if the other two expressions were
10
N used. Thus one may trace rays all the way up to the image plane and determine

-10-
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the centroid of the ray distribution in this plane with appropriate weighting

I(u,v) of each ray.

If the illumination across the pupil is uniform, e-g., if

A(u,v) = A0 , (13a)

and

1(u,v) = A2

0
(13b)

1 I0

and, therefore,

E - SI0 , (13c)

then Eq. (11) reduces to

<x> R f W(u,v)
= R au du dv (14a)

S

and

> R $ W(uV)
<Y> I S du dv. (14b)
S

Using Stokes theorem, the surface integral in Eq. (14) involving the

derivative of the aberration function can be written in terms of its line

integral along the curve bounding the surface. Thus, we may write6

<x> = (R/S) f W(u,v) u •ds (15a)

and

<y> - (R/S) # W(u,v) v ds , (15b)

where u and v are unit vectors along the u and v axes, respectively, ds

represents an element of arc length vector of the curve bounding the pupil.

It is evident from Eq. (15) that in the case of an aberrated but uniformly

illuminated pupil, the centroid of the PSF can be obtained from the value of

the aberration function only along the perimeter of the pupil. Accordingly,

in that case, to calculate the centroid the knowledge of the aberration across

the interior of the pupil is not needed.

-11-



III. APPLICATION TO SYSTEMS WITH ANNULAR PUPILS

A. Uniform Illumination

Consider an imaging system with an aberrated but uniformly illuminated

annular pupil of inner and outer radii of ca and a, respectively, where

0 < e < 1. The area of the pupil is given by

S _ W(lC 2 )a 2  • (16),

Owing to the circular boundary of the pupil, it is convenient to use plane

polar coordinates (h,O), where

u = h cose (17a)

and

v - h sine, (17b)

so that
e - tan- 1(v/u) (17c)

and

h - (u, + v) 1 2 . (17d)

Moreover, 0 < e < 2W and La < n < a. A vector element of a circular arc with

a center of curvature at ,(00) and passing through a point (u,v) is given by

ds - (u dO, v dO), (18)

Let the aberration function in polar coordinates be W(h,O;e). Substituting

Eq. (i8) into Eq. (15), we obtain

21
<x> [R/(l-cz)aI f [(a,e;e) - £ W(,e;)] cose de (l9a)

0

-12-



and

27
<> = ([R/(l-e2 )al f [W(aO;C) - C W(ea,O;C)] sine dO . (19b)

0

Let us expand the aberration function W(hO;c) in terms of a complete

set of Zernike annular polynomials Rm (p;C) cosmO and Rm (p;c) sinme which are
a a

orthogonal over the annular pupil , where

p - h/a. (20)

Thus, we may write

_.w/h,(9;e) = /2-,7 Rt (p;e) (c caosmO + a .amO), (21)
n-0 m-0 In am

where a aad a are positive integers (including zero), n-m >0 and even,

£ l/VT - m
Ca0

-1 = . (22)

and c and s are the expansion coefficients. Note that
am am

O 0. (23)

The radial polynomials obey the orthogonality relation

I a (I--,€) 6,(4
fr R (p;C) R (p;E) p dp ' ( .(24)

-£ a a 2n+71 6an

where 6 n is a Kronecker delta. The magnitude of each expansion coefficient

(except c 0 ) represents the standard deviation of the corresponding

aberration term across the annular pupil.

-13-



Substituting Eq. (21) into Eq. (19), and noting the orthogonality of

trigonometric functions, we obtain

• .° 00

<x> =[RI(l-c)a] V -Tin+l) [Rn(l;e) - C R1 (C;C)J c 1  (25a)

n-1 a al

and

<y> [R/(l-c 2 )al r2 / j [Rn(l;e) - £ R1 (C;C)] a (25b)

where a prime on the summation sign indicates a summation over odd integral

values of n. Thus the only aberrations that contribute to the LOS error
I:_ 1

are those with m - 1. Aberrations of the type Ra (p;e) cose contribute to

<x> and those of the type R1(p;c) sine contribute to <y>, This is also
hs Ia

evident from the symmetry of the aberrations. Since R a(p;e) consists of terms
n p pn-2 1n  k

in , ,..., and , therefore, for example, R (p;c)cosO is symmetric in

v but not in u. Hence the PSF is symuetric in y as may be seen from Eq. (I)

noting that the amplitude across the pupil is uniform.. Accordingly, <y> - 0

for this aberration.

It is well known that, for seall aberrations, the Strehl ratio for an

optical system depends on the variance of its aberration6 . Therefore, two

aberration terms- ith a - 1, but different values of a, affect the Strehl

ratioin the same way if their coefficients are equal in magnitude. However,

it is evident from Eq. (25) that their contribution to the LOS error is not

the same; an aberration of higher order contributes a larger error for the

same value of the coefficient. Hence, in tolerancing an optical system, one

must be careful in allocating equal standard deviation to two aberration terms

that also contribute to the LOS error.

In the case of a circular aperture (C - 0),

R 1(l;O) = I . (26)

-14-



Therefore, Eq. (25) simplifies to

-x CR R/a) Y '2(n+l)7 c ni(27a)
n-In

and

<y>. OR R/a) ) v2-(n+l) 8 .i (27b)
n=1

We note that as in the case of an annular pupil, two aberration terms with

equal standard deviation but different order n do not contribute equally to

the LOS error. For a given standard deviation, a higher-order aberration

gives a larger LOS error compared to a lower-order aberration.

B. Radially Syummetric Illumination

Let A~h) and I(h) describe the radially synmmetric amplitude and

irradiance distributions across the aberrated annular pupil, where

1(h) OR A (h). (28)

In polar coordinates, Eq.' (11) for the LOS'can be written

R a 2W! 3W(h,O;e) sine 3W(h 8e)] h ~ (9<X > Jr (h) [cone hh d O (29a)
Ca 0L

and

R a 21! [sn Mwh,Q; C) +cosO _9W(h,6; C) 1 id ~ 2b111J J (h) sin h h d8, (2b

where

E -R2W! I(h) hdh de (30)
Ca

-15-



We now expand the aberration function in terms of anhular polynomials

S (P;E) cosmO and Sm(p;C) sinmO that are orthogonal over the radially
n n

symmetric illuminated annular pupil 7 . Thus we write

nwo M-0;c)£ '2n)S ,,e)c cothr snoe), (31)
n=O m=O n

where

S Mm, R (p;C) - (nI) (n-2i+l)R m(p;) Sm (p;C)> Sm - (P;C) (32)

is a radial polynomial with proprties similar to those of R"(p;e). It should
n

be evident that the aberration coefficients c and s in Eq. (31) are

different from those in Eq. (21). In Eq. (32)

I 27r 1 21rM lM

R (0;C) Sn2i(P;,)> =  n (;) Sn2i(0;) A(ap)p dp/ / I A(aP) p dp,

C 0 0 (33)

and e is a normalization constant such that
n

1 1

£ Sm(P;CY Sm (p;) A(P) p dp / r A(P) p dp (34)a" a (C : Sn S -- " an' 34

Substituting Eq. (31) into Eq. (29) we find that

w~aR 1'/;y*Ia 1d 3.
<X> M a__...vrE 'In+l) c I(ap) [P S (p;Z)] do (35a)S nl l C M

and

<Y> voO''F n~l I(ap) r (p S(p;c)J p 3b
E n-I a

-16-



Once again the only aberrations that contribute to the LOS error are

those with m - 1. Aberrati6ns of the type SI (p;) cose contribute to <x> and1ana

those of the type S (p;e) sine contribute to <y>, aud this can be explained

from the symmetry properties of the aberrated PSF in a manner similar to the

discussion following Eq. (25).

IV. NUMERICAL EXAM4PLES

A. Uniform Illumination

Using polar coordinates

x = r cos (36a)

and

y U r sine, (36b)

it can be shown that for an aberration-free optical system with a uniformly

illuminated annular pupil, Eq. (1) reduces to9

I(r;) (rr) 2 J

Hee=Irc le) Zlrs £2 I(o;£). (37)

Here---

r = (x2 + y2)1/2 (38)

is the radial distance of a point (x,y) in the image plane from its origin,

and

r - r/XF (39)
s

is a scaled radial distance of an image point. J () is the first-order

Bessel function of the first kind, and

* F - R/2a (40)

1
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is the f-number of the system. The central value of the PSF is given by

I(O;C) - ESI/X2 R 2 , (41)

where the power E in the image is given by Eq. (13c).

The line joining the center of the pupil and the centroid of the PSF for

a given point object defines the LOS of the optical system in its image space

for that point object. Since the aberration-free PSF is circularly symmetric

about the origin of the (x,y) plane, its centroid also lies at this origin,

i.e., it lies at the center of curvature of the reference sphere with respect

to which the aberration for the point object under consideration is zero.

Hence, the line joiuing the origins of the (u,v) and (xy) planes defines the

LOS.

When aberrations are introduced into the system such that the centroid

of its PSF shifts, the position of the point object as perceived by the system

changes, i.e., there is a LOS error. We have shown that in the case of

optical systems with pupils having circular boundaries and uniform or radially

symmetric amplitude distributions, the only aberrations that contribute to the
1 1LOS error are of the type R (p;c)cose and R (p;c)sinO. Since the radial

polynomials RI(p;C) consist of ter in On, on-2, and p, with their
c

coefficients varying with c, there is no loss of generality if we consider
annaberrations of the type p cose (or pnsin6), where n is an odd integer, to

determine their contribution to the LOS error. Thus, we consider an aberration

n_ _W(h,e) W e (h/a) cose, Ca < h < a (42s)

i ,n cose, <p<l, (42b)

where W is the peak aberration at the edge of the pupil relative to a value
-n

of zero at its center. Since <y> and correspondingly <6> are both zero

for this type of an aberration, we shall not explicitly so state from now on.

We shall, for example, refer to the centroid as simply <x>.
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Substituting Eq. (42) into Ea. (20), we obtain

(n-l)/2 c2i.

<x> - 2W P (43)

The corresponding angular.LOS error is given by

(n-l)/2 2i (4

<a> - 2(Wn/D) Ci (44)
i-0

where

D - 2a (45)

is the outer diameter of the annular pupil. We note from Eq. (44), for

example, that for circular pupils (C - 0), one wave (W - iX) of aberration ofn

the type given by Eq. (42) produces an angular LOS error of 2X/D. This is

quite large considering that the angular radius of the (aberration-free) Airy

disc-is only 1.22 X/D.

It is interesting to note that when e - 0, the LOS error depends only

on the value of W but not on n, the power of p in Eq. (42b). This isa

consistent with our earlier observation [following Eq. (15)) that, for a

uniformly illuminated pupil, the centroid of its aberrated PSF depends only on

the aberration along its perimeter. In the case of a circular pupil, the.

variation of the aberration along its perimeter as given by Eq. (42) is the

same for different orders of the aberration. Hence, for a given value of

Wn, even though aberrations such as tilt (n - 1), primary coma (n - 3),

secondary coma (n - 5), etc., which are completely different from each other

across the interior of the pupil and, therefore, give completely different

PSF's, nevertheless give the same centroid since the aberrations are identical

on the perimeter of the pupil. This is not true for an annular pupil, in

which case, although the aberration along the outer perimeter is the same for

different values of n, it is different along the inner perimeter. Hence, for

a given value of Wn, an annular pupil gives aberrated PSF's with different

centroids for different orders of the aberration.
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We may add that similar observations hold for balanced aberrations

represented by Zernike polynomials R (p;c) cos6 and R (p;e)sinO. For
reoeenn n

example, for a given value of Wn, aberrations Wn R (p;o)cosO across a

circulat pupil give PSF's with the same centroid since R1(l;0) i 1, i.e.,n

since the aberration along the perimeter of the pupil is independent of the

aberration order n. In the case of an annular pupil, RI (i;) as well as
nn
R (C;e) depend on the value of n. Hence, PSF's with different centroids are

obtained for different aberration orders n.

Wavefront Tilt

If we let n - 1 in Eq. (42), the aberration is simply a tilt of the

optical wavefront through the center of the pupil. The PSF shifts and its

centroid moves from (0,0) to

<x> - 2W1F (46a)

corresponding to

<a> = 2W /D. (46b)

Thus, for example, one wave of wavefrcnt tilt, produces an angular LOS error

of 2X/D, regardless of the value of C. Of course, in this case, the

position of the peak value of the PSF is coincident with the position of its

centroid.

Primary Coma

If we letn = 3, in Eq. (42) the aberration obtained is called classical

primary coma. The centroid in this case is given by

<x> 2W3F(l + . (67)

* Thus, for a given value of W3, the centroid for an annular pupil shifts by a

factor of (1 + e2) larger than that for a circular pupil.
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For small values of W31 the peak value of the aberrated PSF occurs at

a point such that if the aberration is measured with respect to a reference

sphere centered at this point, the variance of the aberration across the

annular pupil is minimum. From the properties of the Zernike annular polyno-

mials, we find that the polynomial RI(p;e)cosO gives the optimum combination

of p3 cose and pcosO terms leading to a minimum variance. Since 7

R1 CP;) =  3(L+c2)3 - 2( +C2+e)e (48)3 (l_C2[C2 ) (14+4] 1/2'

we note that, for small values of W3, the peak value of the aberrated PSF

occurs at

Xm 4W 3F (1 + C2 + e4)/3(l + c2), (49)

where the subscript m refers to the point corresponding to minimum aberration

variance. From the form of the aberration, it is understood that yI 0.

Thus, an amount W3 of primary u-coma shifts the centroid and peak of the PSF

by different amounts, the movement of the peak being 2(1 + £2 + e")/3(1 + el)l

of the movement of the centroid. As an example, a circular pupil aberrated by

a qu&rter wave of primary u-coma (W3 - X/4) gives an aberrated PSF with a

centroid at <x> - XF/2 and a peak value at x m -XF/3.

For large values of W3, the peak of the aberrated PSF does not occur at

the point corresponding to minimum aberration variance
10. For example, in the

case of circular pupils, the peak lies approximately at the point corresponding

to W 1 - (2/3)W 3 only when W3 ! 0.7X. For larger values of W3, the peak occurs

closer to the origin than the point corresponding to minimum aberration variance.

For W > 1.6X, the distance of the peak from the origin does not increase mono-3-
tonically, but fluctuates as W3 increases.

Ix Since, according to"Eq. (47), the

distance of the centroid increases linearly with W3, it is clear that the separa-

tion between the locations of the centroid and peak increases as W3 Increases.
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If we let * - 0 and A(h) - A0 in Eq. (A6), we find that, along the x-axis,
the PSF aberrated by primary coma of the type W3p 3cosO can be written

I(x;) =.[I(0;£)/(l-) 21 [ O J(rB) dt] 2  (50)

where

B - (2tW - x )t 1/2 (51)

x x/XF, (52)

and W3 is in units of X. Figure I shows how I(x;e) normalized by the

aberration-free central value I(0;e) given by Eq. (41) varies with x for several

typical values of W3 varying from 0 to 2X, and e a 0 and e2 I 0.5. Figure 2

shows bow the irradiance Im(W3; ) at Xm, the peak irradiance I p(W3;0 and the
irradiance I (W ; ) at <x> vary with Wy Figure 3 shows how xm , x (the point

c3; WV p
at which peak irradiance occurs), and <x> vary with W The observations made

3.
above about the PSF's aberrated by primary coma are evident from these figures.

Several typical values of Xm, Xp, and <x> and the corresponding irradiances

In, Ip, and Ic are noted in Table 1, where the numbers without parentheses are

for c " 0 and those with parenthesis are for 2 a 0.5. The aberrated central

irradiance 1(0) is also given in this Table. The irradiance values I(0) and

I are-the Strehl ratios calculated for primary and balanced primary coma,
mn
respectively, in an earlier paper.'0

Secondary Coma

If we let n = 5 in Eq. (42), the aberration obtained is called classical

secondary coma. The centroid in this case is given by

<x> 2W5F(l + £2 + FQ. (53)
5
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Figure 1. P.3? IN x ;C) for several typical values of primary eomu aberra-

tion W3in units of X. The amplitude A(u,v) across the pupil is
uniform. The PSFs# are normalized by the aberration-free central
value given by Eq. (41). x5 represents x in units of AY.
(a) £ 0, (b) C~ 0.5.
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Table 1. Typical values of xm, Xp, and <x> in units of XF, and the

corresponding irradiances Im Ip, and Ic in units of the aberration-free

central irradiance for PSF's aberrated by primary coma, W(he) - W3 3cose.

The units of W 3 are A. The aberrated central value 1(0) is also given here.

The amplitude A(uv) across the pupil is uniform. The numbers without

parentheses are for a circular pupil (C 0) and those with parenthesesare

for an annular pupil with £C 2 0.5.

W x X <x> I Ip I (0)
3m p a p c

0 0 0 0 1.0000 1.0000 1.0000 1.0000

(0) (0) (0) (1.0000) (1.0000) (1.0000) (1.0000)

0.5 0.67 0.66 1.00 0.8712 0.8712 0.6535 0.3175

(0.78) (0.78) (1.50) (0.9283) (0.9283) (0.0524) (0.0403)

1.0 1.33 1.30 2.00 0.5708 0.5717 0.1445 0.0791

(1.56) (1.55) (3.00) (0.7410) (0.7412) (0.1357) (0.0319)

1.5 2.00 1.80 3.00 0.2715 0.2844 0.0004 0.0618

(2.33) (2.32) (4.50) (0.5063) (0.5064) (0.0139) (0.0010)

2.0 2.67 1.57 4.00 0.0864 0.1978 0.0061 0.0341

(3.11) (3.07) (6.00) (0.2936) (0.2946) (0.0160) (0.0000)
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W4., W

The variance of an aberration of the type p 5cosO is reduced if an amount

-[(1+2+ 1+6)/2(l+c2)]W 5 of pcose aberration is introduced.

Hence, the corresponding value of % is given by

x = W5 F( l+C2+C'+6 )/(l 1+ 2 ). (54)

Thus, for example, in the case of a circular pupil, the variance is reduced

by a factor of 4 if W1 I -0.5W 5  Accordingly, for small values of W , the

peak of the corresponding aberrated PSF occurs at x. = W5 F, while the centroid

occurs at <x> = 2W5F. The aberrated PSF.along the x-axis in this case is

given by Eq. (50) where

B - (2t' W 5 - Xsa)t /2  (55)

and W is in units of X. Figure 4 shows how I(x;e) varies with x for5
several values of WS,_ and e - 0 and e2 - 0.5. The values of x x p, and

<x>, and the corresponding irradiances Im, p and Ic for the values of W

considered are noted in Table 2.

The variance of the aberration 5cos6 is reduced even further if an

appropriate amount of P3cose aberration is also iutroduced. For a given value

of W5 , the appropriate amounts of W 3 and W1 that give minimum variance may be

obtained from the radial Zernike annular polynomial RI(P;C), where
7

10(l+4 C 2 +e")p S - 12(l+4c 2 +4 C"s 6 )pa + 3(1+4c 2 +lO+4e 6 +C8)P

3" (,_C2)1 (1+4C2+ 4)(l+9 2+9C1+) ]1/2

(56)

Thus, in the case of a circular pupil, the variance is reduced by a factor of

100 if we introduce p cose and p cosO aberrations with W I M 0.3W5 and

W 3  -. 2W5 . Hence the peak value of the PSF for a circular pupil aberrated

by a small value of W and W -1.2W occurs at xm  -0.6W F According to5 3 5 6 5
Eq. (43), the corresponding centroid occurs a. <x> = -0.4W F. Therefore, the

F5
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Table 2. Same as Table 1, except that the aberration is secondary coma,

W(h,e) -W 5 p
5 cose, where W5is in units of X.

X 5 <X> P I c1(0)

0 0 0 0 1.0000 1.0000 1.0000 1.0000

(0) (0) (0) (1.0000) (1.0000) (1.0000) (1.0000)

0.5 0.50 0.49 1.00 0.8150 0.8153 0.4114 0.4955

(0.63) (0.62) (1.75) (0.8400) (0.8402) (0.0760) (0.1768)

1.0 1.00 0.83 2.00 0.4464 0.4664 0.0025 0.2332

(1.25) (1.21) (3.50) (0.4948) (0.4966) (0.0282) (0.0002)

1.5 1.50 0.81 3.00 0.1685 0.3237 0.0098 0.1873

(1.88) (1.74) (5.25) (0.2003) (0.2196) (0.0130) (0.0009)

2.0 2.00 1.11 4.00 0.0420 0.2523 0.0073 0.1389

(2.50) (1.71) (7.00) (0.0573) (0.1478) (0.0074) (0.0065)
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separation between the peak and the centroid is 0.2W F. For large values of

SW, 5minimization of variance with respect to W3 and W1 does not lead to

a maximum of the PSF.

As an example, we consider the PSF aberrated by an aberration

W(h,e) - (W5 + W3p 3) cose, (57a)

where

1.2 W5(1+4 +4c4+')/(1+4 2+C"). (57b)

According to Eq. (56), the point in the image plane with respect to which the

aberration variance is minimized is given by

x = -0.6 W F(1+4c 2+l0+4C 6+e )/(l+4c +4). (58)
m 5.

Substituting Eq. (57) into Eq. (19), we obtain the centroid

<x> = -W5F(O.4+2C2+7.2+2C6+0.4€)/(1+4Z+t). (59)

The aberrated PSF along the x-axis is obtained by substituting Eq. (57) into

Eq. (A6). We find that it is given by Eq. (50), where

-; (2t 5 + 2tW 3 - X 1/2 (60)

Figure 5 shows the aberrated PSF I(x;c) for several values of W 5 with W 3 given

by Eq. (57), and C - 0 and 2 - 0.5. The values of xm , xp and <x>, and the

corre'sponding irradiances I , Ip, I are given in Table 3. Note that x X,,

and <x> are all negative. Moreover, their magnitude for the values of W

considered, especially in the case of c - 0.5, is very large. Therefore, in

*.- Figure 5, the horizontal coordinate is chosen to be x -x

.
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Figure 5. Same as Figure 1 except that the aberration is a combination of

primary and secondary coma given by Eq. (57). Note that in this

figure the horizontal coordinate is x.- xm
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Table 3. Same as Table 1., except that the aberration is a combination of

primary and secondary coma given by Eq. (57).

0 0 0 0 1.0000 1.0000 1.0000 1.0000

*(0) (0) C0) (1.0000) (1.0000) (1.0000) (1.0000)

1.0 -0.60 -0.59 -0.40 0.9676 0.9682 0.8763 0.3721

(5.0) (-5.60) (-5.60) (-5.35) (0.8832) (0.8832) (0.0005) (0.0039)

2.0 -1.20 -1.18 .-0.80 0.8765 0.8784 0.5870 0.0030

(10.0) (-11.19) (-11.23) (-10.69) (0.6101) (0.6128) (0.0000) (0.0014)

*3,0 -1.80 -1.77 -1.20 0.7429 0.7459 0.2981 0.0014

(15.0) (-16.79) (-16.94) (-16.04) (0.3353) (0.3558) (0.0000) (0.0000)

-'4.0 -2.40 -2.37 -1.60 0.5886 0.5914 0.1173 0.0465

(20.0) (-22.38) (-22.80) (-21.38) (0.1493) (0.2296) (0.0000) (0.0008)
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B. Gaussian Illumination

As an example of a radially symmuetric illumination, we consider a Gaussian

annular pupil, i.e. one for which

A~h) - A 0excp(-y(h/a)2j (61a)

- Ao exp(-_yp 2) (61b)

where 'y > 0. The aberration-free PSF for such a pupil may be obtained by

substituting Eq. (61) into Eq. (1) or Eq. (A6) (Appendix A] and letting

W(h,e) - 0. Thus, ye obtain

i~ry~) [/(ey-e-'212I(O,y;e) (fexp(-yt) J rr at /)dt]29 (62)

where

I(0;y;c) - (7ra A6/XR)2 (e -Y)/ l (63)

is the central value of the PSF.

Primary Coma

If we let *-0 and substitute Eq. (61) into Eq. (A6), ye find that,

along the x-axis, the aberrated PSF in the presence of primary coma of the

type W 3 PCase may be vritten

I(x;y;c) - ryI(e*y e-YE)]2 I(0,y;c) [2 exp(-yt) J 0 (1B)dt]
2, (64)

where B is given by Eq. (51).

Substituting Ea. (42) with n - 3 and Eq. (61) into Eq. (29), ye find

that the centroid of the PSF is given by

<x> - 4W F I+CIe22 2y(65)
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From the radial polynomial SI(p;e) for the Gaussian illumination7, we find

that the point in the image plane with respect to which the aberration variance

across the Gaussian pupil is minimized is given by

Km -2W F [2* y(e, e 2 elY) ] (66)
e-YC2 (l+ye2) - e-Y+y)

For small values of W3 , the peak value of the PSF occurs at xm

We now consider some numerical results for y - 1,. which corresponds to

a Gaussian illumination with an irradiance of e- 2 at the edge of a circular

pupil relative to the irradiance at its center. Figure 6 shows how I(x;l;e)

varies with x for several values of W3 and e2 = 0 and 0.5. The values of

x , Xp, and <x>, and the corresponding irradiances In , Ip, and Ic for these

values of W3 are given in Table 4.

Secondary Coma

The aberrated PSF along the x-axis in the presence of secondary coma of

the type W5 PScosO is given by Eq. (64) where B is given by Eq. (55).

Substituting Eq. (42) with n - 5 and Eq. (61) into Eq. (29), we find that the

centroid of the aberrated PSF is given by

x(- 12W F 2 (C + /y + 1/2X) -e-2Y( 1 + 1/y + 1/2()
-2yC2  e-2y

• - e

Some typical numerical results are presented for y - I in Figure 7 and Table 5.

It is evident from the data given in Tables 4 and 5 that the centroids of

two PSF's for nonuniformly illuminated circular pupils aberrated by equal

amounts of primary coma and secondary coma are different. For. example, when

W3 * W5 
= IA, <x>3 = 1.37 and <x> 5 = 1.12 where <x> is in units of )P.

In the case of a uniformly illuminated circular pupil, <x>3 a <x> 5 for W3 a W5

as may be seen from Tables 1 and 2. Of course, for an annular pupil, the

centroids <x>3 and <x>5 for W3 
= W5 are also different whether the pupil is

uniformly or nonuniformly illuminated.
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Figure 6. Same as Figure 1 except that the amplitude across the pupil is

Gaussian given by Ea. (61) with y - 1. The PSF's ace normalized

by the aberration- free value 1(0;1,e) given by Eq. (63).
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Table 4. Same as Table 1, except that A(h) is a Gaussian given by Eq. (61)

with y -1. The irradiances given here are normalized by the aberration-free

central irradiance I(0;l;c) given by Eq. (63).

W3x p <X> m I p I c 1(0)

0 0 0 0 1.0000 1.0000 1.0000 1.0000

(0) (0) (0) (1.0000) (1.0000) (1.000011 (1.0000)

0.50 0.61 0.60 0.69 0.8805 0.8806 0.8670 0.4567

(0.76) (0.76) (1.42) (0.9288) (0.9288) (0.1126) (0.0602)

1.00 1.22 1.15 1.37 0.6013 0.6062 0.5590 0.1708

(1.51) (1.51) (2.84) (0.7435) (0.7435) (0.1273) (0.0348)

1.50 1.82 1.40 2.06 0.3205 0.3672 0.2479 0.1199

(2.27) (2.24) (4.25) (0.5112) (0.5122) (0.0014) (0.0033)

2.00 2.43 1.46 2.75 0.1305 0.2947 0.0624 0.0773

(3.03) (2.93) (5.67) (0.3005) (0.3065) (0.0399) (0.0000)
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Figure 7. Same as Figure 6, except that the aberration is

secondary coma W 5.
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Table 5. Same as Table 2, except that A(h) is a Gaussian given by Eq. (61)

with y - 1. The irradiances given here are normalized by the aberration-free

central irradiance I(0;1;c) given by Eq. (63).

W5x p<X> I pI c 1(0)

0 0 0 1.0000 1.0000 1.0000

(0) (0) (1.0000) (1.0000) (1.0000)

*0.50 0.41 0.56 0.8452 0.8105 0.6322

(0.59) (1.57) (0.8451) (0.0123) (0.2253)

1.00 0.64 1.12 0.5659 0.4161 0.3793

(1.14) (3.14) (0.5144) (0.0026) (0.0025)

1.50 0.63 1.68 0.4541 0.1147 0.3083

(1.49) (4.70) (0.2595) (0.0075) (0.0011)

2.00 0.74 2.24 0.3824 0.0075 0.2476

(1.67) (6.27) (0.1892) (0.0043) (0.0084)
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V. DISCUSSION ,ND CONCLUSION

We have defined the LOS of an optical system in terms of the centroid of

its PSF. Since the imaging properties of an optical system are determined by

its pupil function, the centroid of the PSF is no exception. By expressing

the centroid in terms of the pupil function, it is easy to show that the wave

diffraction optics and ray geometrical optics give identical expressions for

the centroid, regardless of the shape of the pupil or the amplitude and phase

distributions across it. This is inspite of the fact that the two PSF's are

quite different from each other. Although the LOS of an optical system can be

obtained from the centroid of its PSF, or from the slope of the imaginary part

of its OTF evaluated at the origin, in optical design and analysis, the

simplest way to obtain the LOS would be to determine the centroid of the ray

spot diagram. The idea is that, since ray tracing would be needed to

calculate the aberrations of the system any way, one might as well trace the

rays up to the image plane and calculate their centroid without calculating

the diffraction PSF. Of course, the precision with which the centroid would

be calculated would depend on the number of rays used, just as it would depend

on the number of rays used to calculate the aberration function and the number

of points used to calculate the aberrated PSF, for example, using an FFT

algorithm.

In the case of an aberrated system with an annular pupil and a radially

symmetric illumination, e.g., Gaussian, the LOS may be determined from the

aberration coefficients of the appropriate orthogonal Zernike
II

polynomials S (p;e) cose and S (p;c) sine. When the amplitude across the

pupil uniform, these polynomials reduce to polynomials R1 (P;) coss and
I n

R (P;E) sine, respectively. The results for a circular pupil may be obtained
nby letting C - 0. In practice, however, given a certain optical system, the

simplest way to determine the centroid would be to use its point spread

function as measured, for example, by a phctodetector array.

We have shown that for a uniformly illuminated pupil, since the centroid

of an aberrated PSF depends only on the aberration along the perimeter of the
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pupil, aberrations such as W pncase and W R (o) cose (and similarly
n n n n

W ap sine and W R (p;O) sine) across a circular pupil with differentn nno
aberration orders a, give aberrated PSF's with ceatroids that depend only on

the value of W . Thus, for a given value of W , different aberration orders

give PSF's with the same centroid.

We have obtained numerical results on the PSF's aberrated by primary and

secondary coma for circular as well as annular pupils with uniform and

Gaussian illuminations. In the case of uniform illumination, for a given

value of W3, the peak value, is higher for C
2 

- 0.5 than for C - 0. The peak

value as well as the centroid occur at larger value of x when c is no zero

compared to when it is zero. The peak value corresponds to minimum aberration

variance (I - I) for W < 1.5X when C = 0 and for W3 < 2.5k when e2 - 0.5.

Except when W3 -, 1c is quite small compared to I p As W3 increases, <x> and

x increase linearly with it. However, x first increases monotonically with
Sp2

W and then fluctuates in a series of maxima and minima. For e2 . 0.5 the
3

maxima and minima are widely spaced and are less pronounced compared to those

for c 0.

In the case of secondary coma, the peak value does not occur for larger

and larger values of x as W5 increases, i.e., x does not increase monotonically
5 0 p

with W 5  For example, when C 0, x - 0.83 for W 5 = and x p- 0.81 for
= 1.7 whe W 1.Xan = 1.71

U5 - L.5X. Similarly, when c 0.5, xp 1.74 when Wt .5X and x 1
p 5 p

when W5 = 2X. As in the case of primary coma, <x> increases with e for a given

value of W5 .

In the case of Gaussian illumination numerical results are obtained for

y I. I and I are higher, and x , x and <x> are smaller for Gaussian

m p m p
illumination than those for uniform (y - 0) illumination. It should be noted

that I and I are normalized by the aberration-free park irradiance, and it is
m p

only these normalized values that are higher for' Gaussian illumination. [This

normalization is different for Gaussian and uniform illuminations as may be

seen by comparing Eqs. (41) and (63)]. Otherwise, for a given circular or

annular aperture and for a given total power E, an unaberrated pupil gives

maximum central irradiance when it is uniformly illuminated.
12
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- The results given here are applicable to both imaging systems, e.g.,
-'5  those used for optical surveillance, as well as to laser transmitters used for

active illumination of a target. In both cases, the LOS of the optical system

is extremely important. A LOS error of a surveillance system will produce an

error in the location of the target. In the case of a laser transmitter, a

large LOS error may cause the laser beam to miss the target altogether.

'4 Whereas for static aberrations, we may be able to calibrate the LOS, for

dynamic aberrations it is the analysis given here that will determine toler-

ances on aberrations of the type oncosO and p sine in the case of annular or

circular pupils.

Although we have defined the LOS of an optical system in terms of the

centroid of its PSF, it could have been defined in terms of the peak of the

PSF (assuming that the aberrations are small enough so that the PSF has a

distinguishable peak). As pointed out in Section II, for an aberration-free

PSF, its peak value and its centroid both lie at its origin, regardless of the

amplitude variations across its pupil. The two are not coincident when

aberrations are present. The precise definition of the LOS will perhaps

depend on the nature of the application of the optical system.' Moreover, in

practice, only a finite central portion of the PSF will be sampled to measure

its centroid, and the precision of this measurement will be limited by the

noise-characteristics of the photodetector array.
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APPENDIX. PSF for an Annular Pupil with Radially Symmetric Illumination and

Coma Aberration

Consider an optical system having an annular pupil with radially

symmetric illumination A(h) and coma aberration

W(h,e) - p(W cose + W sinO). (Al)

"S'., where, as in Eq. (25), nhe prime on the summation sign indicates a summation

over odd integral values of n. Note that h - pa and £ < p < I. In polar

coordinates, Eq. (1) for the aberrated PSF may be written

1 27
I~r, - (a'/)XR)f A(h) exp{iri[2W(h8e) - r ap cos(O-$)l p dp d812, (A2)e 0

where we have assumed that W(h,6) and, therefore, W and W' are in units
n a

of X. Integration over 6 in Eq. (A2) can be carried out if we let

2W(h,e) - r p cos(&-$) - B cos(-4), (A3)

where

-Z ( 2 W aP r a p cos*) + 2 W' p - r p sin)2 (A4)

and (nWpn sn,/ W 8a

tan*- 2Wn - r -in )/Cj'2Wn r. cos$) (A5)

*. Thus, Eq. (A2) becomes

1
I(r,W;c) (ia/XR)2 [If A(h) J0 (WB)dt] , (A6)

where we have let

t P2. W)
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